The Actual Value Of Inexperienced Metal – Watts Up With That?

Guest Post by Willis Eschenbach

There is much agitation in the climatosphere about the amount of “coking coal” used in making steel. A number of allegedly smart folks are working on ways to replace that coal with hydrogen to reduce the amount of eeevil CO2 produced in steelmaking. There’s a very recent post on the subject here on WUWT, describing a “green steel” method developed in Sweden.

So I thought I’d take a look at the numbers for steel for the European Union. If you know me, you know I like to run the numbers myself.

From “Hydrogen In Steel Production“, I find:

The steel industry accounts for 4% of all the CO2 emissions in Europe.

Now, Europe emits about 2.5 billion tonnes of CO2 per year. The four percent of that emitted by steelmaking is ~100 million tonnes per year. 8.43 billion tonnes of CO2 equals one ppmv of atmospheric CO2. So 100 million tonnes of CO2 avoided is a savings of about 0.013 ppmv of CO2 per year … except that about 45% of CO2 emissions are sequestered immediately, so they’ll only be saving about 0.007 ppmv per year … be still, my beating heart.

Then we have this estimate of the annual increase in electricity needed to convert EU steelmaking to hydrogen:

The total energy requirement for climate-neutral transformation of the blast furnace route, for example, amounts to around 120 terawatt hours (TWh) per year.

To provide that additional electricity they’ll need 14 new 1 GW nuclear power plants, plus a few more for peak production plus downtime. So call it 18 new nukes.

Plus, of course, the cost of the electricity itself. At say $0.06 per kilowatt-hour, that’s another $4.8 billion per year.

Next, will “green steel” be cost-effective and competitive in the marketplace? Don’t make me laugh.

Furthermore, imported steel that is not produced in a climate-neutral way should be taxed so that prices remain comparable.

If the steel industry has to fend for itself on this task, the prices of its end products will have to be raised enormously, which will make it internationally uncompetitive. The exodus of an entire branch of industry or at least the upstream production will be the result. 


Prices of European steel will have to be “raised enormously”? … wonderful. Steel is used in millions of products …

How about the capital cost?

We calculate that it will cost around EUR 100 billion [US$117 billion] to make the production of crude steel climate neutral.


Plus the cost of the 18 new nukes, about $8 billion per GW = another $144 billion dollars. And then there’s the cost of the additional electricity itself, which by 2050 will be $4.8 billion/year times 28 years = $134 billion.

So all up, by 2050 the changeover will cost almost $400 billion.

If they did this tomorrow, by 2050 European steelmakers would have reduced the atmospheric CO2 by ~ 0.2 ppmv. And IF (big if) the IPCC is right, that would make the world of 2050 cooler by ~ 0.002°C …

Now, temperatures drop with altitude, at the rate of about one degree C per 100 meters vertical. So if you are standing up, a temperature drop of 0.002°C is less than the underlying altitude-driven temperature difference that constantly exists between your toes and your knees …

And please, please don’t say “If the EU does this the other countries will follow”. Outside of the EU, the US, and a few other foolish sheep, most countries are nowhere near that stupid. As a way to cool the atmosphere, this will cost about US$200 trillion per °C of cooling by 2050. By comparison, global Gross Domestic Product (GDP) is about $85 trillion per year, so it would cost well over twice the globe’s entire annual GDP to cool the planet by 1°C at that rate.

At a cost of $200,000,000,000,000 per degree of cooling, that’s gotta be far and away the world’s most expensive air conditioner … and the looney-tunes folks in the EU think it’s a brilliant plan.

And if Europe does go to “green steel”, what do they get for their $400 billion dollars besides an unmeasurably tiny cooling by 2050?

Oh, right—”enormously expensive” steel. Heck of a deal …

Mathematics. Don’t leave home without it.


AS ALWAYS: I can and am generally happy to defend my own words. But I cannot defend your interpretation of my words. So please, when you comment quote the exact words you are discussing.

PS—How big is a trillion? Almost unimaginably big. As one example, a million seconds is 11.6 days … and a trillion seconds is 31,700 years.


Article Rating

Like this:

Like Loading…

Comments are closed.